本文的起源来自最近一个让我非常不爽的事。
我最近在改一个开源RNN工具包currennt(http://sourceforge.net/projects/currennt/),想用它实现RNNLM功能。
currennt使用了大量的面向对象的编程技巧,可以使用GPU,向量运算使用了thrust库(https://code.google.com/p/thrust/)。
RNNLM(http://rnnlm.org/)也有相应开源实现,非常算法风格的代码,向量运算就是自己使用数组实现的。
结果……大出我的语料,在不使用GPU的情况下,currennt慢成狗!我不断的修改,直到最后几乎完全在currennt里重写了一个RNNLM……速度才终于一致了。这花费了我大量时间,最关键的是我根本没打算花这些时间,算是计划外开销。
所以这里干脆对常用的几种向量运算做个评测,下回遇到至少心里有数。
参与评测的向量实现包括:
- C++ array
- C++ STL vector
- C++ thrust(CPU)
- C++ thrust(GPU)
- python
- python numpy
评测指标包括:
- 创建、填充向量
- 向量点乘,相乘
- 矩阵相乘
测试环境:
Intel Xeon CPU E5649@2.53GHz x24
VS2010
python 2.7.6 (32bit)
thrust v1.5
numpy 1.8.1
C++ array
创建全0向量:0.000s,几乎不占用时间
int vector_size=100000000;float* vector=(float*)calloc(vector_size,sizeof(float));
创建+填充向量:0.140s
int vector_size=100000000;float* vector=(float*)calloc(vector_size,sizeof(float));for (int i=0;i
向量点乘:0.390s
float sum=0;for(int i=0;i
向量相乘:0.265s
float sum=0;for(int i=0;i
矩阵乘向量:0.344s
int matrix1_colnum=50000;int matrix1_rownum=2000;int matrix1_size=matrix1_colnum*matrix1_rownum;float* vector1=(float*)calloc(matrix1_size,sizeof(float));for (int i=0;i
矩阵乘矩阵:0.749
(耗费时间与matrix1_rownum*matrix1_colnum*matrix2_colnum成正比)
int matrix1_rownum=200;int matrix1_colnum=5000;int matrix1_size=matrix1_colnum*matrix1_rownum;float* vector1=(float*)calloc(matrix1_size,sizeof(float));for (int i=0;i
C++ STL vector
创建全0向量:0.140s
int vect_size=100000000; vectorvector(vect_size);
创建+填充向量:0.140s
int vect_size=100000000;vectorvector(vect_size,0.01);
向量点乘:0.375s
int vect_size=100000000;vectorvector1(vect_size,0.01);vector vector2(vect_size,0.02);start_t=clock();float sum=0;for(int i=0;i
向量相乘:0.250s
int vect_size=100000000;vectorvector1(vect_size,0.01);vector vector2(vect_size,0.02);vector vector3(vect_size);start_t=clock();for(int i=0;i
矩阵乘向量:0.390s
int matrix1_colnum=50000;int matrix1_rownum=2000;int matrix1_size=matrix1_colnum*matrix1_rownum;vectorvector1(matrix1_size,0.01);vector vector2(matrix1_colnum,0.02);vector vector3(matrix1_rownum);start_t=clock();for(int row=0;row
矩阵乘法:0.827s
int matrix1_rownum=200;int matrix1_colnum=5000;int matrix1_size=matrix1_colnum*matrix1_rownum;vectorvector1(matrix1_size,0.01);int matrix2_rownum=5000;int matrix2_colnum=200;int matrix2_size=matrix2_rownum*matrix2_colnum;vector vector2(matrix2_size,0.02);int matrix3_size=matrix1_rownum*matrix2_colnum;vector vector3(matrix3_size);start_t=clock();for(int row1=0;row1
C++ thrust(CPU)
创建全0向量:0.140s
int vect_size=100000000;thrust::host_vectorvector1(vect_size);
创建+填充向量:0.140s
int vect_size=100000000;thrust::host_vectorvector1(vect_size,0.01);
填充向量:0.078s
thrust::fill(vector1.begin(),vector1.end(),0.01);
向量点乘:0.359s
int vect_size=100000000;thrust::host_vectorvector1(vect_size,(float)0.1);thrust::host_vector vector2(vect_size,(float)0.2);thrust::host_vector vector3(vect_size,(float)0.2);start_t=clock();thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies ());float sum=thrust::reduce(vector3.begin(),vector3.end(),(float)0,thrust::multiplies ());end_t=clock();
向量相乘:0.187s
int vect_size=100000000;thrust::host_vectorvector1(vect_size,(float)0.1);thrust::host_vector vector2(vect_size,(float)0.2);thrust::host_vector vector3(vect_size);start_t=clock();thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies ());end_t=clock();
矩阵乘向量:0.110s
struct matrixXvect_func{ thrust::host_vector* matrix; thrust::host_vector * vector; int matrix_rownum; int matrix_colnum; __host__ __device__ float operator()(const int& idx) const{ float t=0; for(int col=0;col vector1(matrix1_size,(float)0.1);thrust::host_vector vector2(matrix1_colnum,(float)0.2);thrust::host_vector vector3(matrix1_rownum);start_t=clock();matrixXvect_func fn;fn.matrix=&vector1;fn.vector=&vector2;fn.matrix_rownum=matrix1_rownum;fn.matrix_colnum=matrix1_colnum;thrust::transform( thrust::counting_iterator (0), thrust::counting_iterator (0) + matrix1_rownum, vector3.begin(), fn );end_t=clock();
矩阵乘矩阵:0.655s
struct matrixXmatrix_func{ thrust::host_vector* matrix1; thrust::host_vector * matrix2; int matrix1_rownum; int matrix1_colnum; int matrix2_rownum; int matrix2_colnum; __host__ __device__ float operator()(const int& idx) const{ int rownum=idx/matrix2_colnum; int colnum=idx%matrix2_colnum; float t=0; for(int col=0;col vector1(matrix1_size,(float)0.1);int matrix2_rownum=5000;int matrix2_colnum=200;int matrix2_size=matrix2_rownum*matrix2_colnum;thrust::host_vector vector2(matrix2_size,(float)0.2);int matrix3_size=matrix1_rownum*matrix2_colnum;thrust::host_vector vector3(matrix3_size);start_t=clock();matrixXmatrix_func fn;fn.matrix1=&vector1;fn.matrix2=&vector2;fn.matrix1_rownum=matrix1_rownum;fn.matrix1_colnum=matrix1_colnum;fn.matrix2_rownum=matrix2_rownum;fn.matrix2_colnum=matrix2_colnum;thrust::transform( thrust::counting_iterator (0), thrust::counting_iterator (0) + matrix3_size, vector3.begin(), fn );end_t=clock();
C++ thrust(GPU)
创建全0向量:0.140s
int vect_size=1000000;thrust::device_vectorvector1(vect_size);
创建+填充向量:0.140s
int vect_size=1000000;thrust::device_vectorvector1(vect_size,0.1);
CPU向量赋值:0.141s
int vect_size=1000000;thrust::host_vectorvector1(vect_size,0.1);start_t=clock();thrust::device_vector vector2=vector1;end_t=clock();
填充向量:0.000s
int vect_size=1000000;thrust::device_vectorvector(vect_size);start_t=clock();thrust::fill(vector.begin(),vector.end(),(float)0.1);end_t=clock();
向量点乘:0.016s
int vect_size=100000000;thrust::device_vectorvector1(vect_size,(float)0.1);thrust::device_vector vector2(vect_size,(float)0.2);thrust::device_vector vector3(vect_size,(float)0.2); start_t=clock();thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies ());float sum=thrust::reduce(vector3.begin(),vector3.end(),(float)0,thrust::multiplies ());end_t=clock();
向量相乘:0.000s
int vect_size=100000000;thrust::device_vectorvector1(vect_size,(float)0.1);thrust::device_vector vector2(vect_size,(float)0.2);thrust::device_vector vector3(vect_size);start_t=clock();thrust::transform(vector1.begin(),vector1.end(),vector2.begin(),vector3.begin(),thrust::multiplies ());end_t=clock();
矩阵乘向量(实现1):0.530s
int matrix1_rownum=2000;int matrix1_colnum=50000;int matrix1_size=matrix1_colnum*matrix1_rownum; thrust::device_vectorvector1(matrix1_size,(float)0.1);thrust::device_vector vector2(matrix1_colnum,(float)0.2);thrust::device_vector tmp(matrix1_colnum);thrust::device_vector vector3(matrix1_rownum); start_t=clock();for(int row=0;row ()); vector3[row]=thrust::reduce(tmp.begin(),tmp.end(),(float)0,thrust::multiplies ());}end_t=clock();
矩阵乘向量(实现2)CUBLAS,待试
矩阵乘矩阵CUBLAS,待试
Python
直接使用python的list实现上述功能实在太慢……而且由于无法指定float类型,其默认使用16位double类型来表示小数,使用10^8会超出list索引上限……故只使用10^7实验,速度差距可以自行换算。
大致估算python的向量运算比c++慢50倍,矩阵运算慢1000。
初始化向量并赋值:1.51s
vector_size=10000000vector=[]for i in range(vector_size): vector.append(0.1)
向量点乘:1.75s
vector_size=10000000 vector1=[]for i in range(vector_size): vector1.append(0.1)vector2=[]for i in range(vector_size): vector2.append(0.1)start_t=time.time()sum=0for i in range(vector_size): sum+=vector1[i]*vector2[i]end_t=time.time()
向量相乘:2.39
vector_size=10000000vector1=[]for i in range(vector_size): vector1.append(0.1)vector2=[]for i in range(vector_size): vector2.append(0.1)vector3=[]for i in range(vector_size): vector3.append(0.1)start_t=time.time()for i in range(vector_size): vector3[i]=vector1[i]*vector2[i]end_t=time.time()
矩阵乘向量:3.06s
matrix1_rownum=2000matrix1_colnum=5000matrix1_size=matrix1_rownum*matrix1_colnumvector1=[]for i in range(matrix1_size): vector1.append(0.1)vector2=[]for i in range(matrix1_colnum): vector2.append(0.1)vector3=[]for i in range(matrix1_rownum): vector3.append(0.1)start_t=time.time()for row in range(matrix1_rownum): for col in range(matrix1_colnum): vector3[row]=vector1[row*matrix1_colnum+col]*vector2[col]end_t=time.time()
矩阵相乘:11.37s
matrix1_rownum=200matrix1_colnum=500matrix1_size=matrix1_rownum*matrix1_colnumvector1=[]for i in range(matrix1_size): vector1.append(0.1)matrix2_rownum=500matrix2_colnum=200matrix2_size=matrix2_rownum*matrix2_colnumvector2=[]for i in range(matrix2_size): vector2.append(0.1)matrix3_size=matrix1_rownum*matrix2_colnumvector3=[]for i in range(matrix3_size): vector3.append(0.1)start_t=time.time()for row in range(matrix1_rownum): for col in range(matrix2_colnum): for i in range(matrix1_colnum): vector3[row*matrix2_colnum+col]+=vector1[row*matrix1_colnum+i]*vector2[i*matrix2_colnum+col]end_t=time.time()
当然实际进行向量运算没人会拿python的list数据结构进行运算,这里只是好奇定量测一下list到底有多慢……
Python numpy
创建全0向量:0.0s
vector_size=100000000vector=numpy.zeros(vector_size)
创建+填充向量:0.25s
vector_size=100000000vector=numpy.zeros(vector_size)vector.fill(0.01)
向量点乘:0.125s(由于python是32位……内存原因,数据规模减半)
vector_size=50000000vector1=numpy.zeros(vector_size)vector1.fill(0.01)vector2=numpy.zeros(vector_size)vector2.fill(0.02)start_t=time.time()sum=numpy.inner(vector1,vector2)end_t=time.time()
向量相乘:0.234s
vector_size=50000000vector1=numpy.zeros(vector_size)vector1.fill(0.01)vector2=numpy.zeros(vector_size)vector2.fill(0.02)start_t=time.time()vector3=numpy.multiply(vector1,vector2)end_t=time.time()
矩阵乘向量:0.094s
matrix1_rownum=2000matrix1_colnum=50000matrix1_size=matrix1_rownum*matrix1_colnumvector1=numpy.zeros(matrix1_size)vector1.fill(0.01)vector2=numpy.zeros(matrix1_colnum)vector2.fill(0.02)start_t=time.time()vector1=vector1.reshape(matrix1_rownum,matrix1_colnum)vector2=vector2.reshape(matrix1_colnum,1)vector3=numpy.dot(vector1,vector2)end_t=time.time()
矩阵乘矩阵:23.16s(numpy.dot出乎意料的慢,使用numpy.matrix类时间为11.73s,依旧很慢而且占用更大内存,在创建matrix对象时也要0.4s)
matrix1_rownum=2000matrix1_colnum=50000matrix1_size=matrix1_rownum*matrix1_colnumvector1=numpy.zeros(matrix1_size)vector1.fill(0.01)matrix2_rownum=50000matrix2_colnum=1000matrix2_size=matrix2_rownum*matrix2_colnumvector2=numpy.zeros(matrix2_size)vector2.fill(0.02)start_t=time.time()vector1=vector1.reshape(matrix1_rownum,matrix1_colnum)vector2=vector2.reshape(matrix2_rownum,matrix2_colnum)vector3=numpy.dot(vector1,vector2)end_t=time.time()